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What is C?

» Programming Language
» Imperative

» Static
» Weakly typed

» Originated in 1969

» Different standards
» C11 is the most recent



Syntax

» Java's syntax is based on C

#include <stdio.h>

int main()

{

printf("Hello, world!\n");
return O0;



Comments

» Same as Java comments
» // — Single line comment

» /* This is a
Multiline comment */



Statements

» Very similar to Java
» { .. } //Compound statement
» 1f (condition) {
// statement
} else {
// statement

}

» while (condition)



Expressions

» Agaln very similar to Java

>

1 + 1;

» True && ( false || true );

>

>

>

0xf0 >> 2;
atoi("100");

(1 < 2) ? true

false



Variables

»inti=3;
» Types:

char
short

int

long

long long
float
double
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long double

» Most types can be prefixed with a signed/unsigned

» No String type! We will come back to that..
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Arrays

Syntax is similar to Java
» But no need to instantiate them!

Java:

» int[] myint = new int[16];

» myint[4] = 1;

C:

» int myint[1l6];

» Myint[4] = 1;

Small difference: stack vs heap allocation

» Will get back to that...



Literals

int a = 16; » int h = 16u; //unsigned

int b = 0x16; //hex » float i = 16.0f; //float
int ¢ = 0x10; » float j = 16.0;

int d = 016; //octal » float k = 16E0;//16*10°

int e = 020; » char m = 'm';

int £ = 018; » char n = '\n"';

long g = 161; » char s[] = "abc";



Preprocessor

Processes the source before the compiler

#define ERR STR "Error: PEBKAC"
» puts(ERR STR);

#include <stdio.h>

#define SUM(a,b) a+b

» SUM(1,2)*5;



Man 3

Evaluate the difference the bash commands:
man printf

man 3 printf
» Section 3 is library calls

See man man for all sections and more info

Man 3 [function name] can be very useful



Toolchain

> Preprocessor

» Processes the source code and resolves all preprocessor directives
» #include, #define, everything that starts with #

» Compiler
» Parses the code and compiles it to machine code
» Compiles every file individually
» Linker
» Links the different compiled files together into one executable



Hello, world!

#include<stdio.h>
int main()

{
puts("Hello, world!\n");

return 0;
}

» Compile this code using:
gcc -std=cll -Wall hello.c -0 hello

» Run using:
» ./hello



Pointers

int a = 100; //an integer

int *b; //a pointer to an integer

int **c; // a pointer to a pointer to an integer
b

&a; // &a = the pointer to a

C &b; // c now points to b which points to a
*b = 200; // a = 200

**c = 300; // a = 300



Arrays

int a[l6]; //an integer array of length 16
An array 1s a fancy pointer to the first element

A points to the first element in the array

» a == &a[0]
a[0] = 100; //Like in Java
*a = 200; // a[0] = 200

a[idx] 1s equivalent to *(a+idx)



Strings

A string Is an array of characters

Terminated by a NULL character '\0"

char *stringl = "bla";

char string2[] = "bla";

stringl = "blabla"; //allowed
string2 = "blabla"; //not allowed



Standard Library

Most of the work has been done
Lots of info in the man pages

Good starting points:
man 3 stdio

man 3 string

When 1n doubt, google!



Exercises

» Exercise 2: Implement and test the functions.
» Exercise 3: Make a simple calculator



Functions and Prototypes

Use to declare a function before you define it.
Used to write libraries
int add(int x, int y);

int add(int x, int vy)
{

return x + y;

}



Memory allocation

» Stack:

» Memory that is limited to the current function scope
» Everytime you enter a function the stack ‘grows’
» When you leave the function the stack ‘shrinks’ again
» Limited in size

> Heap:
» Available in the whole program
» Manual management

» Useful for large chunks of memory
» Survives when the function ends



Heap

All examples so far used the stack
Memory on the heap is manually managed

Allocated by calling malloc(size); //returns a pointer to the new
address

This memory will keep existing until free(address) is called



Heap

char * getHelloString() {
char *mystr = malloc(16);
strepy(mystr, “Hello”);
return mystr;

}
int main() {
char* hello = getHelloString();
puts(hello);
free(hello);
return O;



Pitfalls

Buffer overflow

Undefined behaviour

Strings are “one bigger” than their size
» Termination character

Memory leaks

Do not ignore the compiler warnings

Segfaults

» Accessing memory you do not have access to
» Can easily happen when dealing with pointers



>

>

After the course

Use google

Use cppreference, it has a great ¢ section
» http://en.cppreference.com/w/c

Read the man pages!

Try gdb the GNU debugger

» Steep learning curve, but very worth it


http://en.cppreference.com/w/c
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