C-Course

Offered to you by I.C.T.S.V. Inter-Actief
Noah Goldsmid

Wednesday 11 October 2017

What is C?
Syntax

Man 3

Toolchain

Hello, world!
Pointers

Standard Library
Function Prototypes
Memory allocation
Pitfalls

What's next?

Table of Contents

What is C?

» Programming Language
» Imperative

» Static
» Weakly typed

» Originated in 1969

» Different standards
» C11 is the most recent

Syntax

» Java's syntax is based on C

#include <stdio.h>

int main()

{

printf("Hello, world!\n");
return O0;

Comments

» Same as Java comments
» // — Single line comment

» /* This is a
Multiline comment */

Statements

» Very similar to Java
» { .. } //Compound statement
» 1f (condition) {
// statement
} else {
// statement

}

» while (condition)

Expressions

» Agaln very similar to Java

>

1 + 1;

» True && (false || true);

>

>

>

0xf0 >> 2;
atoi("100");

(1 < 2) ? true

false

Variables

»inti=3;
» Types:

char
short

int

long

long long
float
double

vV VvV v vV vV vV VY

long double

» Most types can be prefixed with a signed/unsigned

» No String type! We will come back to that..

v

v

v

Arrays

Syntax is similar to Java
» But no need to instantiate them!

Java:

» int[] myint = new int[16];

» myint[4] = 1;

C:

» int myint[1l6];

» Myint[4] = 1;

Small difference: stack vs heap allocation

» Will get back to that...

Literals

int a = 16; » int h = 16u; //unsigned

int b = 0x16; //hex » float i = 16.0f; //float
int ¢ = 0x10; » float j = 16.0;

int d = 016; //octal » float k = 16E0;//16*10°

int e = 020; » char m = 'm';

int £ = 018; » char n = '\n"';

long g = 161; » char s[] = "abc";

Preprocessor

Processes the source before the compiler

#define ERR STR "Error: PEBKAC"
» puts(ERR STR);

#include <stdio.h>

#define SUM(a,b) a+b

» SUM(1,2)*5;

Man 3

Evaluate the difference the bash commands:
man printf

man 3 printf
» Section 3 is library calls

See man man for all sections and more info

Man 3 [function name] can be very useful

Toolchain

> Preprocessor

» Processes the source code and resolves all preprocessor directives
» #include, #define, everything that starts with #

» Compiler
» Parses the code and compiles it to machine code
» Compiles every file individually
» Linker
» Links the different compiled files together into one executable

Hello, world!

#include<stdio.h>
int main()

{
puts("Hello, world!\n");

return 0;
}

» Compile this code using:
gcc -std=cll -Wall hello.c -0 hello

» Run using:
» ./hello

Pointers

int a = 100; //an integer

int *b; //a pointer to an integer

int **c; // a pointer to a pointer to an integer
b

&a; // &a = the pointer to a

C &b; // c now points to b which points to a
*b = 200; // a = 200

**c = 300; // a = 300

Arrays

int a[l6]; //an integer array of length 16
An array 1s a fancy pointer to the first element

A points to the first element in the array

» a == &a[0]
a[0] = 100; //Like in Java
*a = 200; // a[0] = 200

a[idx] 1s equivalent to *(a+idx)

Strings

A string Is an array of characters

Terminated by a NULL character '\0"

char *stringl = "bla";

char string2[] = "bla";

stringl = "blabla"; //allowed
string2 = "blabla"; //not allowed

Standard Library

Most of the work has been done
Lots of info in the man pages

Good starting points:
man 3 stdio

man 3 string

When 1n doubt, google!

Exercises

» Exercise 2: Implement and test the functions.
» Exercise 3: Make a simple calculator

Functions and Prototypes

Use to declare a function before you define it.
Used to write libraries
int add(int x, int y);

int add(int x, int vy)
{

return x + y;

}

Memory allocation

» Stack:

» Memory that is limited to the current function scope
» Everytime you enter a function the stack ‘grows’
» When you leave the function the stack ‘shrinks’ again
» Limited in size

> Heap:
» Available in the whole program
» Manual management

» Useful for large chunks of memory
» Survives when the function ends

Heap

All examples so far used the stack
Memory on the heap is manually managed

Allocated by calling malloc(size); //returns a pointer to the new
address

This memory will keep existing until free(address) is called

Heap

char * getHelloString() {
char *mystr = malloc(16);
strepy(mystr, “Hello”);
return mystr;

}
int main() {
char* hello = getHelloString();
puts(hello);
free(hello);
return O;

Pitfalls

Buffer overflow

Undefined behaviour

Strings are “one bigger” than their size
» Termination character

Memory leaks

Do not ignore the compiler warnings

Segfaults

» Accessing memory you do not have access to
» Can easily happen when dealing with pointers

>

>

After the course

Use google

Use cppreference, it has a great ¢ section
» http://en.cppreference.com/w/c

Read the man pages!

Try gdb the GNU debugger

» Steep learning curve, but very worth it

http://en.cppreference.com/w/c

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

